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Abstract—A highly competitive micro evolutionary algorithm
to solve unconstrained optimization problems called µJADE
(micro adaptive differential evolution), is adapted to deal with
constrained search spaces. Two constraint-handling techniques
(the feasibility rules and the ε-constrained method) are tested in
µJADE and their performance is analyzed. The most compet-
itive version is then compared against two highly-competitive
algorithms for constrained optimization when solving a well-
known set of 36 test problems, and also against a small population
algorithm tested on another well-known set of thirteen problems.
The results show that µJADE provides a better performance
when coupled with the ε-constrained method and also that its
results are competitive against those provided by state-of-the-art
approaches.

I. INTRODUCTION

Several real-world optimization problems are hard to solve
[1]. Normally, those problems have constraints that delimit
the feasible region within the whole search space, and the
search algorithm must find it, sample it, and find the best
feasible solution. Evolutionary algorithms (EAs) have been
very competitive to deal with such search problems, and
differential evolution (DE) has been particularly successful [2].

There are research efforts on the usage of DE with small
populations (micro differential evolution, µDE), but mainly
focused on unconstrained optimization problems. Caraffini
et al. in [3] applied a µDE to solve problems with high
dimensionality using a simple local search, which consisted in
moving the best vector along the axes. Such mechanism was
applied at every generation. They called this algorithm µDEA.
In their paper, the algorithm was compared against state-
of-the-art DE variants like Self-Adaptive Differential Evo-
lution (SADE), Adaptive Differential Evolution (JADE) and
Modified Differential Evolution with p-Best Crossover (MDE-
pBX), in four different benchmarks (CEC2005, BBOB2010,
CEC2008, CEC2010). The result of the comparison indicated
that µDEA outperformed all the algorithms aforementioned,
concluding that small populations can work well with DE in
unconstrained search spaces.

Another µDE was proposed by Salehinejad et al. in [4],
where they changed the concept of the mutation factor by
converting it from a real number into a vector, i.e., a different
random value for the mutation factor was generated for each
mutation applied to the population. The authors called their
proposal Micro Differential Evolution with Vectorized random
Mutation factor (MDEVM). MDEVM was compared against

the Standard Micro-Differential Evolution (SMDE) and the
Micro-differential evolution with scalar random mutation fac-
tor (MDESM) in 28 functions of the CEC 2013 benchmark.
The results showed that MDEVM had a higher performance
than those of the compared algorithms. Such conclusion re-
marks the viability of using a small population in DE to solve
high-dimensional problems.

In [5], Brown et al. proposed a small population version
of the Self-adaptive differential evolution (µJADE) for un-
constrained continuous optimization. µJADE uses an adaptive
mechanism of the F and CR parameters, similar to the orig-
inal JADE, i.e., adapting their values every maxp100, 10Dq
generations and proposing a new mutation operator denoted
as current-by-rand-to-pbest/1. This approach was tested in
the classical multimodal benchmark in 30 dimensions and
it was compared against some variants that use conventional
sized populations [6]. The results showed that µJADE is more
reliable than state-of-the-art DE algorithms.

It is important to mention that, the main limitation of the
µEAs is the difficulty maintaining the diversity of solutions.
This limitation causes a premature convergence on possible
local optima due to the small populations. This problem hardly
occurs in conventionally population sized algorithms. Most of
the µEAs have implemented mechanisms to deal with this
situation, getting competitive results in the context where they
were tested.

On the other hand, there are also works on µEAs for
constrained spaces. In [7], Fuentes-Cabrera et al. implemented
a local version of particle swarm optimization with a small
population (µPSO) to solve the thirteen functions described in
[8].

As it can be seen, µDE has been, to the best of the authors’
knowledge, extensively tested on unconstrained search spaces,
but overlooked or scarcely analyzed in constrained search
spaces. For that reason, the main motivation of this work
lies on studying the behavior of one of the µDE algorithms,
µJADE in this case, when solving numerical constrained
problems. Two constraint-handling mechanisms are added to
µJADE and their performance is studied.

The rest of this document is divided as follows: Section
II introduces the basics on µJADE. Section III describes the
constraint-handling techniques added in µJADE. Section IV
presents the experiments and results obtained. Finally, Section
V includes the conclusions and future work.



II. µJADE: MICRO ADAPTIVE DIFFERENTIAL EVOLUTION

µJADE has four elements which are described in the next
subsections.

A. Mutation operator

The mutation operator introduced in µJADE is shown in
Equation 1 and it is denoted as current-by-rand-to-pbest/1.

vi “ xi ` Fipx
p
best ´ xaq ` Fipxb ´ x̃cq (1)

where vi is the mutation vector to be generated, xi is the
target vector, Fi is the current value for the mutation factor
(detailed later), xpbest is a randomly chosen vector from the
the best p3{NP q% vectors of the population, xa and xb are
vectors chosen randomly from the current population, and x̃c
is a vector randomly chosen from the union of the current
population and the auxiliary file where vectors are stored. The
main idea of this operator was to improve the exploratory
capacity of small populations maintaining a good convergence.
When xi ff xa and xi ‰ xa, current-by-rand-to-pbest/1
is exploratory. However, when xi « xa, current-by-rand-
topbest/1 is similar to current-to-pbest/1. The objective was to
accelerate convergence at the end of the optimization process
and reducing the probability of finding local optimum in early
stages of optimization. Moreover, two constraints used in the
original JADE were removed: (1) x̃c ‰ xb, and (2) x̃c ‰ xa,
both to avoid a greedy behavior of the operator.

B. F and CR adaptation

µJADE introduced a modification in the adaptation of the F
and CR parameters to prevent a quick value decrease at early
generations and avoiding the diversity loss on small population
algorithms. This modification consists in the updating process
of F and CR at every maxp100, 10Dq generations rather
than at each generation, where D is the dimensionality of the
optimization problem.

C. Perturbation

A perturbation was introduced to provide µJADE with the
ability to escape from local optima and increase diversity. This
perturbation was proposed by Farfaj et al. in [9], and it is
incorporated after the crossover operator as in Equations 2 and
3 . To indicate that the perturbation was applied to a particular
variable of a given vector, it is marked with a 0 in a binary
vector b as shown in Equation 4.

ri,j “ randp0, 1q (2)

ui,j “
!

Lj ` randp0, 1qpUj ´ Ljq if ri,j ď 0.005
ui,j otherwise

)

(3)

bi,j “

"

0 if ri,j ď 0.005
bi,j otherwise

*

(4)

D. Restarts

One way to avoid stagnation on µEAs is restarting the
population at every generation. Despite the aforementioned
modifications, it is possible that the search stagnates on local
optima. For that reason, the last modification for µJADE
was to apply this mechanism at every maxp1000, 100Dq
generations if the best solution did not improve. It is worth
noticing that the restart mechanism is applied by excluding
the best vector in the current population.

The complete pseudocode of µJADE is shown in Algorithm
1.

III. CONSTRAINT-HANDLING TECHNIQUES

Different constraint-handling techniques are reported in the
specialized literature of bio-inspired algorithms [2]. In this sec-
tion, two competitive techniques are introduced and adopted
in this research: the feasibility rules and the ε-constrained
method. Those techniques were selected because their com-
petitive performance and also because they modify only the
selection criteria in µJADE, i.e., they do not significantly
change the algorithm [2].

A. Feasibility Rules

The set of three feasibility rules is one of the most popular
constraint-handlers [10]. This mechanism consists in three
selection criteria as follows: (1) when two feasible individuals
are compared, the individual with the best objective function
value is chosen, (2) if one of the individuals is infeasible
and the other one is feasible, then the feasible individual is
chosen, and (3) when two infeasible individuals are compared,
the individual with the lowest sum of constraint violation is
chosen. The idea is to favor good feasibles individuals .

B. ε-constrained method

Takahama et al. in [11] introduced the ε-constrained
method, which converts a constrained optimization problem
into an unconstrained optimization problem. To evaluate if an
individual is feasible or not, the ε-constrained method defines
a constraint violation φpxq whose value is the same as the
sum of constraint violation used in the feasibility rules, see
Equation 5:

φpxq “
ÿ

j

}maxt0, gjpxqu}
p
`

ÿ

j

}hjpxq}
p (5)

where p is a positive number, 2 in this case. Furthermore, ε
level comparisons are defined as an order relation on a pair
of objective function constraint violation values (fpxq, φpxq).
Let f1pf2q and φ1pφ2q be the objective function and constraint
violation values of vectors x1px2q, respectively. The ε level
comparisons are defined in Equation 6:

pf1, φ1q ďε pf2, φ2q ô

"

f1 ď f2 if φ1, φ2 ď ε
f1 ď f2 if φ1 “ φ2

φ1 ă φ2 otherwise

*

(6)

It is worth noticing that when ε “ 8 two infeasible vectors
are compared based on their objective function values. In



Algorithm 1 µJADE
1: Initialise population (P)
2: µCR = 0.5
3: µF = 0.5
4: Initialize file (A) empty
5: for g “ 1 to numberofgeneration do
6: for i “ 1 to NP do
7: CRi “ randnipµCR, 0.1q
8: Fi “ randcipµF , 0.1q
9: Randomly select xa ‰ xi

10: Randomly select xb ‰ xa ‰ xi
11: Randomly select xpbest ‰ xa from pNP best popu-

lation vectors
12: Randomly select xc from P YA
13: Randomly select jrand P N`ďD
14: vi “ xi ` Fipx

p
best ´ xaq ` Fipxb ´ x̃cq

15: vi,j “

$

&

%

Lj`xi,j

2 if vi,j ă Lj
Uj`xi,j

2 if vi,j ą Uj
vi,j otherwise

,

.

-

16: for j “ 1 to D do
17: di,j “ randp0, 1q

18: ui,j “

"

vi,j if ORpdi,j ă CRi, j “ jrandq

xi,j otherwise

*

19: bi,j “

"

1 if ORpdi,j ă CRi, j “ jrandq

0 otherwise

*

20: end for
21: for j “ 1 to D do
22: ri,j “ randp0, 1q

23: ui,j “

"

Lj ` randp0, 1qpUj ´ Ljq if ri,j ď 0.005
ui,j otherwise

*

24: bi,j “

"

0 if ri,j ď 0.005
bi,j otherwise

*

25: end for
26: CRi “

řD
j“1 bi,j

D
27: if fpuiq ă fpxiq then
28: xi Ñ A
29: xi “ ui
30: CRi Ñ SCR
31: Fi Ñ SF
32: if ui is better than best population vector then
33: BIR “ BIR` 1
34: end if
35: end if
36: end for
37: Randomly remove vectors from A so that |A| ď NP
38: if modpg,maxp100, 10Dqq “ 0 then
39: µCR “ p1´ cqµCR ` cL1pSCRq, L1pHq “ 0
40: µF “ p1´ cqµF ` cL2pSF q, L2pHq “ 0
41: SCR “ SF “ H
42: end if
43: if modpg,maxp1000, 100Dqq “ 0 then
44: if BIR= 0 then
45: Reinitialize population excluding the best vector.
46: end if
47: end if
48: end for

contrast, when ε “ 0, the two infeasible vectors are compared
based on their constraint violations.

The ε level is controlled using Equation 7, where εp0q is
initialized with the constraint violation of the θ-th vector in
the population (xθ). ε is updated as long as the number of
iterations t does not exceed the value Tc, after that, ε is set to
0.

εp0q “ φpxθq

εptq “

"

εp0qp1´ t
Tc
qcp , 0 ă t ă Tc,

0 t ě Tc

*

(7)

C. Adding the constraint-handling techniques to µJADE

The addition of each one of the two constraint-handling
techniques into µJADE is straightforward because both of
them are just comparison criteria which replace the original
µJADE criterion based only in the objective function value
for unconstrained optimization, e.g., lines 27, 32, and 45 in
Algorithm 1.

IV. EXPERIMENTS AND RESULTS

Three experiments were carried out to evaluate the perfor-
mance of µJADE with each constraint-handling technique. For
the first two experiments, a well-known set of constrained
optimization problems with 18 test problems with 10 and 30
dimensions was used [12] ; meanwhile for the third experi-
ment, a well-known set of thirteen constrained problems was
used [13]. In the first experiment, the two constraint-handling
techniques aforementioned were compared to identify that
with the best performance: µJADE (FR) is µJADE with the
feasibility rules and µJADEε is µJADE with the ε-constrained
method. In the second experiment, the most competitive al-
gorithm of the first experiment was compared against two
highly competitive EAs for constrained optimization. Those
algorithms are the εDEag proposed by Takahama et al. in [11],
and DEwAPI proposed by Elsayed et al. in [14]. Finally, in
the third experiment, µJADEε was compared against µPSO to
validate the performance in the world of small population size
algorithms.

The 95%-confidence Wilcoxon Signed Rank Test was ap-
plied to the samples of results, where three symbols were
used: “=”, “+” and “-”; where “=” indicates that there is no
significant difference between the two algorithms, “+” denotes
that the first algorithm is significantly better than the second
one, and “-” means that the first algorithm is significantly
worse than the second algorithm.

A. First experiment: µJADE (FR) vs. µJADEε

The parameters used by µJADE using both constraint-
handling techniques are summarized in Table I, in order
to keep the same execution environment. The number of
evaluations was 200000 for 10D test problems and 600000
for 30D test problems. Those parameters were obtained by
preliminary experiments.



TABLE I
PARAMETER SETTING FOR µJADE (FR) AND µJADEε.

Parameter Value
Population size 8

c 1.5
Tc 4000
cp 5

Tables II and III show the results found by each µJADE ver-
sion for 10D and 30D. In both dimensionalities, µJADEε ob-
tained better results than µJADE (FR) based on the Wilcoxon
test. For 10D, µJADEε was significantly better in 11 test
problems out of 18, in the remaining ones, there were no
significant differences. In the same way, for 30D, µJADEε
was significantly better in 10 test problems out of 18, while
in the other seven, no significant differences were observed.
C04 in 30D was omitted because both versions were unable
to find feasible solutions.

Four measures were used to increase the empirical com-
parison to determine which constraint-handling technique per-
formed better: Feasibility Probability (FP ), Probability of
convergence (P ), Average number of Function Evaluations
(AFES) and Successful Performance (SP ) [15]. FP repre-
sents the number of feasible executions (i.e., those runs with at
least one feasible solution found) divided by the total number
of independent executions; FP goes from 0 to 1, where 1
indicates that each independent run reached the feasible region.
P is calculated with the number of successful runs (i.e. those
runs where the neighborhood of the best feasible solution
was reached) divided by the total number of independent
executions. To determine the closeness to the best feasible
solution, a small tolerance, i.e., 1E-4, was used. P goes from
0 to 1, where 1 denotes that all independent executions were
successful runs. AFES is calculated by averaging the number
of evaluations required by a successful run to reach the best
known feasible value. For AFES, lower values are preferred.
Finally, SP is a combination of AFES and P in order
to measure the speed and reliability of the algorithm It is
calculated by dividing AFES from P . As a result, lower
values are preferred because they mean a good compromise
between speed and consistency of the algorithm. It is important
to mention that the best values used to calculate the successful
runs in P , AFES, and SP were obtained from [11]. The
results for those four measures are included in Tables II and
III for 10D and 30D, respectively.

The results of those measures indicate that µJADEε out-
performed µJADE (FR), because the first one presented better
results in most test problems. For FP, both algorithms had
similar results. However, only in two test problems µJADE
(FR) reached higher values with respect to those of µJADEε,
having a better chance of finding feasible solutions. Regarding
other measures µJADEε provided superior results, being more
capable to find a successful solution in less time, i.e., µJADEε
provided better speed and reliability compared with µJADE
(FR).

Fig. 1. Convergence plots of µJADE (FR) and µJADEε for 10D C02 test
problem.

Fig. 2. Convergence plots of µJADE (FR) and µJADEε for 30D C01 test
problem.

Finally, Figs. 1 and 2 include two representative con-
vergence plots where µJADEε (red line) provided a faster
approach to a good solution. Such behavior is easier to see in
10D than in 30D. For all the above mentioned results, µJADEε
was chosen as the most competitive approach, which will be
compared in the next experiment against highly competitive
algorithms for constrained optimization.

B. Second experiment: µJADEε vs. conventional sized popu-
lation algorithms

µJADEε was compared against two competitive conven-
tional sized population algorithms: εDEag proposed by Taka-
hama et al. in [11] and DEwAPI proposed by Elsayed et al.



TABLE II
10D RESULTS BY µJADE (FR) AND µJADEε. BOLD NUMBERS REPRESENT THE BEST VALUES FOUND.

Function Algorithm Best Worst Median Mean St. D. FP P AFES SP Stats (µJADE (FR)
vs µJADEε)

C01 µJADE (FR) -7.4731E-01 -7.2588E-01 -7.4731E-01 -7.4331E-01 7.4244E-03 1 0.64 55390 86548 =
µJADEε -7.4731E-01 -7.2921E-01 -7.4731E-01 -7.4397E-01 5.0826E-03 1 0.64 54301 84845

C02 µJADE (FR) -7.4095E-01 3.5817E+00 1.8511E+00 1.6164E+00 1.2319E+00 1 0 - - -
µJADEε -2.2768E+00 -1.2413E+00 -2.2071E+00 -2.1281E+00 2.2529E-01 1 0 - -

C03 µJADE (FR) 1.3008E+07 1.2412E+15 1.2466E+14 2.4585E+14 3.1525E+14 1 0 - - -
µJADEε 0.0000E+00 8.8756E+00 4.8227E-24 3.5502E+00 4.4378E+00 1 0.6 38359 63932

C04 µJADE (FR) -1.0000E-05 1.6189E+01 6.7844E-01 4.4765E+00 6.9197E+00 0.88 0.36 73600 2.04E+05 -
µJADEε -1.0000E-05 9.8934E-01 -1.0000E-05 1.7528E-01 3.2354E-01 1 0.72 93651 1.30E+05

C05 µJADE (FR) 1.4418E+02 5.3614E+02 4.2672E+02 4.0444E+02 1.1559E+02 1 0 - - -
µJADEε -4.8361E+02 -4.5982E+02 -4.8361E+02 -4.8060E+02 6.0478E+00 1 0.64 85986 1.34E+05

C06 µJADE (FR) -5.5580E+01 5.6372E+02 4.0285E+02 3.8466E+02 1.5349E+02 1 0 - - -
µJADEε -5.7866E+02 -5.7718E+02 -5.7811E+02 -5.7800E+02 6.2002E-01 1 0.2 1.28E+05 6.39E+05

C07 µJADE (FR) 0.0000E+00 3.9866E+00 2.5180E-27 1.5946E-01 7.9732E-01 1 0.96 54094 56348 =
µJADEε 0.0000E+00 4.9311E-26 2.5180E-27 7.6850E-27 1.1185E-26 1 1 42510 42510

C08 µJADE (FR) 0.0000E+00 4.0876E+01 3.9866E+00 8.2170E+00 1.0210E+01 1 0.48 50476 1.05E+05 =
µJADEε 0.0000E+00 5.0845E+01 1.5541E-26 6.0469E+00 1.1916E+01 1 0.64 35539 55530

C09 µJADE (FR) 1.1526E+12 3.1278E+13 8.1924E+12 9.0270E+12 6.1296E+12 1 0 - - -
µJADEε 0.0000E+00 9.0073E+07 7.7031E-26 3.6038E+06 1.8014E+07 1 0.56 41056 73314

C10 µJADE (FR) 1.6163E+12 1.8234E+13 6.7388E+12 7.8844E+12 4.6637E+12 1 0 - - -
µJADEε 0.0000E+00 4.8393E+03 4.1728E+01 2.6529E+02 9.6220E+02 1 0.32 70161 2.19E+05

C11 µJADE (FR) -1.5227E-03 -1.3683E-04 -1.5227E-03 -1.4625E-03 2.8898E-04 0.92 0.96 38394 39993 =
µJADEε -1.5227E-03 -1.5227E-03 -1.5227E-03 -1.5227E-03 3.6696E-09 1 1 69860 69860

C12 µJADE (FR) -3.0549E+02 4.7980E+00 -1.9925E-01 -3.8502E+01 7.6328E+01 1 0.04 70016 1.75E+06 =
µJADEε -4.2652E+02 -1.9924E-01 -1.9925E-01 -1.0413E+02 1.6552E+02 0.96 0 - -

C13 µJADE (FR) -6.8429E+01 -6.3517E+01 -6.8429E+01 -6.7009E+01 1.7203E+00 1 0.4 1.23E+05 3.07E+05 =
µJADEε -6.8429E+01 -6.5578E+01 -6.5578E+01 -6.6719E+01 1.4253E+00 1 0.32 1.27E+05 3.95E+05

C14 µJADE (FR) 0.0000E+00 3.1303E+11 2.7719E+02 1.3609E+10 6.2554E+10 1 0.24 1.20E+05 4.99E+05 -
µJADEε 0.0000E+00 3.9866E+00 4.8878E-27 3.1893E-01 1.1038E+00 1 0.92 46007 50008

C15 µJADE (FR) 8.4408E+10 1.6020E+14 4.4344E+13 5.7217E+13 4.6972E+13 1 0 - - -
µJADEε 0.0000E+00 1.0607E+01 4.8878E-27 1.3706E+00 2.5952E+00 1 0.68 43658 64203

C16 µJADE (FR) 2.1900E-01 1.0394E+00 6.8271E-01 6.5823E-01 2.5065E-01 1 0 - - -
µJADEε 0.0000E+00 9.4810E-01 2.9752E-01 3.7532E-01 3.3789E-01 1 0.16 55534 3.47E+05

C17 µJADE (FR) 2.5030E+01 9.0098E+02 1.8648E+02 2.4508E+02 2.0868E+02 1 0 - - -
µJADEε 1.2326E-32 3.8959E+02 2.6384E-01 5.0345E+01 1.1189E+02 1 0.2 1.19E+05 5.93E+05

C18 µJADE (FR) 2.0309E+02 8.2869E+03 3.4694E+03 3.4103E+03 2.0938E+03 1 0 - - -
µJADEε 0.0000E+00 3.1554E-30 0.0000E+00 2.5244E-31 8.7370E-31 1 1 26044 26044

in [14]. The detailed results are shown in Table IV. Table
V shows the statistical comparison using the Wilcoxon test,
where µJADEε was particularly competitive against εDEag,
mainly in 30D test problems. Regarding DEwAPI, µJADEε
was competitive in some test problems, but was outperformed
in others, mainly in 30D. As a conclusion of this second
experiment, µJADEε was competitive, but still not clearly
better, than conventional sized populations algorithms for
constrained optimization.

C. Third experiment: µJADEε vs µPSO

Finally, µJADEε was compared against one µEA for con-
strained spaces: µPSO [7]. The detailed results are shown in
Table VI, where µJADEε outperformed µPSO in ten out of
thirteen functions, according to the statistical results. More-
over, the µJADEε results were close to the optimal known
value. In conclusion, µJADEε showed to be highly competi-
tive, compared with other µEA for constrained optimization.

V. CONCLUSIONS

A highly competitive µEA for unconstrained optimization
called µJADE was adapted to solve constrained optimization
problems. Two constraint-handling techniques, the feasibility
rules and the ε-constrained method, were added to µJADE and
compared. The latter provided a better performance based on
final statistical results and also based on four performance

TABLE V
STATISTICAL COMPARISON AMONG µJADEε, εDEG AND DEWAPI USING

THE 95%-CONFIDENCE WILCOXON SIGNED RANK TEST. “NA” MEANS
THAT THE PROPOSED ALGORITHM DID NOT FIND FEASIBLE SOLUTIONS.

Function
µJADEε vs.

10D 30D
εDEag DEwAPI εDEag DEwAPI

C01 - - - =
C02 - - + -
C03 - - = -
C04 + - NA NA
C05 - - - -
C06 - - - -
C07 - - = =
C08 = = = =
C09 = = = =
C10 = = = =
C11 - - = =
C12 - + - -
C13 - - + =
C14 = = = =
C15 - - = -
C16 = - = =
C17 + - + -
C18 + = + -

Summary
+ 3 1 4 0
- 10 12 4 8
= 5 5 9 9

measures and convergence behavior. µJADEε was further
compared against two conventionally sized population al-



TABLE III
30D RESULTS BY µJADE (FR) AND µJADEε. BOLD NUMBERS REPRESENT THE BEST VALUES FOUND. “NA” MEANS THAT THE PROPOSED ALGORITHM

DID NOT FIND FEASIBLE SOLUTIONS.

Function Algorithm Best Worst Median Mean St. D. FP P AFES SP Stats (µJADE (FR)
vs µJADEε)

C01 µJADE (FR) -8.2122E-01 -7.9373E-01 -8.1427E-01 -8.1299E-01 6.7506E-03 1 0 - - =
µJADEε -8.2083E-01 -7.8861E-01 -8.0987E-01 -8.0980E-01 8.6780E-03 1 0 - -

C02 µJADE (FR) 7.3664E-01 3.9577E+00 2.9239E+00 2.9973E+00 7.7112E-01 1 0 - - -
µJADEε -2.1954E+00 -1.2243E+00 -1.8217E+00 -1.8123E+00 2.8390E-01 1 0.04 4.29E+05 1.07E+07

C03 µJADE (FR) 2.1771E+10 7.9054E+13 3.1189E+13 2.8109E+13 2.5969E+13 0.52 0 - - -
µJADEε 1.8437E-22 1.8321E+02 2.8673E+01 2.7987E+01 3.4643E+01 1 0.64 2.35E+05 3.68E+05

C04 µJADE (FR) - - - - - - 0 - - NA
µJADEε - - - - - - 0 - -

C05 µJADE (FR) 2.4224E+02 5.5826E+02 4.8759E+02 4.7822E+02 6.5806E+01 1 0 - - -
µJADEε -4.1540E+02 5.3688E+02 -2.3891E+02 -7.4365E+01 3.5260E+02 1 0 - -

C06 µJADE (FR) 2.2947E+02 5.5473E+02 4.8014E+02 4.6503E+02 7.9274E+01 1 0 - - -
µJADEε -5.2248E+02 -9.4134E-01 -4.7936E+02 -4.0917E+02 1.4767E+02 1 0 - -

C07 µJADE (FR) 8.7536E-24 2.0070E+01 1.0319E-19 1.6777E+00 4.8985E+00 1 0.84 2.45E+05 2.91E+05 =
µJADEε 3.9874E-24 4.2653E+00 8.3422E-18 2.4312E-01 8.7094E-01 1 0.8 2.68E+05 3.35E+05

C08 µJADE (FR) 1.6567E-23 8.1094E+02 1.3873E-02 5.3416E+01 1.6469E+02 1 0.56 2.80E+05 4.99E+05 =
µJADEε 1.6493E-23 8.1589E+02 2.7339E-15 6.2209E+01 1.7294E+02 1 0.6 3.02E+05 5.04E+05

C09 µJADE (FR) 1.3525E+13 8.0384E+13 3.3298E+13 3.5741E+13 1.4720E+13 1 0 - - -
µJADEε 1.1528E+00 5.5671E+10 9.3421E+01 2.2268E+09 1.1134E+10 1 0 - -

C10 µJADE (FR) 1.0306E+13 5.5780E+13 3.3853E+13 3.3608E+13 1.1527E+13 1 0 - - -
µJADEε 6.6681E+00 1.9900E+04 4.6657E+01 1.6146E+03 4.6110E+03 1 0 - -

C11 µJADE (FR) -3.9226E-04 -2.0060E-04 -3.9048E-04 -3.7968E-04 4.3503E-05 0.76 0.88 3.14E+05 3.57E+05 +
µJADEε -3.9117E-04 1.8907E-04 -3.8097E-04 -2.5862E-04 2.3879E-04 0.36 0.28 4.02E+05 1.43E+06

C12 µJADE (FR) -1.9926E-01 3.1282E+02 -8.2157E-02 2.1560E+01 6.9655E+01 0.96 0.4 2.10E+05 5.24E+05 +
µJADEε -1.9291E-01 1.6772E+01 5.5424E-01 3.5009E+00 4.7389E+00 0.72 0 - -

C13 µJADE (FR) -6.6706E+01 -6.2795E+01 -6.4908E+01 -6.4877E+01 1.1535E+00 1 0 - - =
µJADEε -6.6975E+01 -6.1539E+01 -6.4693E+01 -6.4531E+01 1.6259E+00 1 0 - -

C14 µJADE (FR) 6.4662E-21 6.7450E+02 4.5105E-11 5.2739E+01 1.4456E+02 1 0.68 3.91E+05 5.74E+05 =
µJADEε 8.7215E-25 1.9508E+01 9.1448E-07 2.0635E+00 5.3917E+00 1 0.56 2.57E+05 4.59E+05

C15 µJADE (FR) 1.8480E+13 3.0384E+14 1.0210E+14 1.3167E+14 8.3267E+13 1 0 - - -
µJADEε 7.3754E-24 7.6821E+01 2.1604E+01 2.2673E+01 1.6213E+01 1 0.04 5.24E+05 1.31E+07

C16 µJADE (FR) 7.8035E-01 1.1456E+00 1.0504E+00 1.0497E+00 8.6980E-02 1 0 - - -
µJADEε 0.0000E+00 8.3683E-01 0.0000E+00 3.5339E-02 1.6713E-01 1 0.84 16817 20020

C17 µJADE (FR) 3.8417E+02 1.7673E+03 1.0668E+03 1.0196E+03 3.7742E+02 1 0 - - -
µJADEε 3.5857E-02 8.8086E+02 1.6151E+02 1.9562E+02 2.1804E+02 1 0.12 4.37E+05 3.65E+06

C18 µJADE (FR) 5.6738E+03 5.9899E+04 1.3873E+04 1.5886E+04 1.0906E+04 1 0 - - -
µJADEε 2.2070E-01 1.1974E+04 1.3645E+01 1.9528E+03 3.5428E+03 1 0 - -

gorithms, where the results were competitive, but still not
clearly better. Moreover, µJADEε provided better results when
compared against one µEA for constrained optimization. The
overall observed performance provides encouraging insights
about the viability of successfully using small populations in
DE to deal with constrained search spaces.

As future work, it is necessary to revisit µJADEε to analyze
its behavior in those problems where local optima were found.
The design of mechanisms to increase the exploration abilities
with a small population will be studied.
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TABLE IV
COMPARISON AMONG µJADEε, εDEG AND DEWAPI. BOLD NUMBERS REPRESENT THE BEST VALUES FOUND.

Function Alg 10D 30D
Best Mean St. D. Best Mean St. D.

C01
µJADEε -7.4731E-01 -7.4397E-01 5.0826E-03 -8.2083E-01 -8.0980E-01 8.6780E-03
εDEag -7.4731E-01 -7.4704E-01 1.3233E-03 -8.2183E-01 -8.2087E-01 7.1039E-04

DEwAPI -7.4731E-01 -7.4731E-01 2.2662E-16 -8.2188E-01 -8.1062E-01 1.1242E-02

C02
µJADEε -2.2768E+00 -2.1281E+00 2.2529E-01 -2.1954E+00 -1.8123E+00 2.8390E-01
εDEag -2.2777E+00 -2.2589E+00 2.3898E-02 -2.1692E+00 -2.1514E+00 1.1976E-02

DEwAPI -2.2777E+00 -2.2776E+00 6.9912E-04 -2.2810E+00 -2.2751E+00 3.9470E-03

C03
µJADEε 0.0000E+00 3.5502E+00 4.4378E+00 1.8437E-22 2.7987E+01 3.4643E+01
εDEag 0.0000E+00 0.0000E+00 0.0000E+00 2.8673E+01 2.8838E+01 8.0472E-01

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 1.2770E-24 1.2199E-23 1.1757E-23

C04
µJADEε -1.0000E-05 1.7528E-01 3.2354E-01 - - -
εDEag -9.9923E-06 -9.9185E-06 1.5467E-07 4.6981E-03 8.1630E-03 3.0678E-03

DEwAPI -1.0000E-05 -1.0000E-05 0.0000E+00 -3.3247E-06 -3.2497E-06 8.6837E-08

C05
µJADEε -4.8361E+02 -4.8060E+02 6.0478E+00 -4.1540E+02 -7.4365E+01 3.5260E+02
εDEag -4.8361E+02 -4.8361E+02 3.8904E-13 -4.5313E+02 -4.4955E+02 2.8991E+00

DEwAPI -4.8361E+02 -4.8361E+02 1.1603E-13 -4.8361E+02 -4.8361E+02 2.6559E-03

C06
µJADEε -5.7866E+02 -5.7800E+02 6.2002E-01 -5.2248E+02 -4.0917E+02 1.4767E+02
εDEag -5.7866E+02 -5.7865E+02 3.6272E-03 -5.2858E+02 -5.2791E+02 4.7484E-01

DEwAPI -5.7866E+02 -5.7866E+02 1.8415E-08 -5.3064E+02 -5.3033E+02 1.1786E+00

C07
µJADEε 0.0000E+00 7.6850E-27 1.1185E-26 3.9874E-24 2.4312E-01 8.7094E-01
εDEag 0.0000E+00 0.0000E+00 0.0000E+00 1.1471E-15 2.6036E-15 1.2334E-15

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 1.6140E-26 1.1662E-25 7.1627E-26

C08
µJADEε 0.0000E+00 6.0469E+00 1.1916E+01 1.6493E-23 6.2209E+01 1.7294E+02
εDEag 0.0000E+00 6.7275E+00 5.5606E+00 2.5187E-14 7.8315E-14 4.8552E-14

DEwAPI 0.0000E+00 1.8075E+00 3.1361E+00 8.9686E-26 5.3824E+00 2.4456E+01

C09
µJADEε 0.0000E+00 3.6038E+06 1.8014E+07 1.1528E+00 2.2268E+09 1.1134E+10
εDEag 0.0000E+00 0.0000E+00 0.0000E+00 2.7707E-16 1.0721E+01 2.8219E+01

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.6343E-23 7.8733E-23

C10
µJADEε 0.0000E+00 2.6529E+02 9.6220E+02 6.6681E+00 1.6146E+03 4.6110E+03
εDEag 0.0000E+00 0.0000E+00 0.0000E+00 3.2520E+01 3.3262E+01 4.5456E-01

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 5.7761E-26 2.0463E-24 5.3676E-24

C11
µJADEε -1.5227E-03 -1.5227E-03 3.6696E-09 -3.9117E-04 -2.5862E-04 2.3879E-04
εDEag -1.5227E-03 -1.5227E-03 6.3410E-11 -3.2685E-04 -2.8639E-04 2.7076E-05

DEwAPI -1.5227E-03 -1.5227E-03 5.9927E-10 -3.9234E-04 -3.9234E-04 2.7736E-09

C12
µJADEε -4.2652E+02 -1.0413E+02 1.6552E+02 -1.9291E-01 3.5009E+00 4.7389E+00
εDEag -5.7009E+02 -3.3673E+02 1.7822E+02 -1.9915E-01 3.5623E+02 2.8893E+02

DEwAPI -3.0549E+02 -2.4554E+01 8.4295E+01 -1.9926E-01 -1.9926E-01 1.7433E-06

C13
µJADEε -6.8429E+01 -6.6719E+01 1.4253E+00 -6.6975E+01 -6.4531E+01 1.6259E+00
εDEag -6.8429E+01 -6.8429E+01 1.0260E-06 -6.6425E+01 -6.5353E+01 5.7330E-01

DEwAPI -6.8429E+01 -6.8429E+01 5.5258E-09 -6.6362E+01 -6.4343E+01 1.1404E+00

C14
µJADEε 0.0000E+00 3.1893E-01 1.1038E+00 8.7215E-25 2.0635E+00 5.3917E+00
εDEag 0.0000E+00 0.0000E+00 0.0000E+00 5.0159E-14 3.0894E-13 5.6084E-13

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 1.5033E-26 1.5947E-01 7.9732E-01

C15
µJADEε 0.0000E+00 1.3706E+00 2.5952E+00 7.3754E-24 2.2673E+01 1.6213E+01
εDEag 0.0000E+00 1.7990E-01 8.8132E-01 2.1603E+01 2.1604E+01 1.1048E-04

DEwAPI 0.0000E+00 1.6315E-15 8.1577E-15 7.4342E-27 6.7441E-01 1.5771E+00

C16
µJADEε 0.0000E+00 3.7532E-01 3.3789E-01 0.0000E+00 3.5339E-02 1.6713E-01
εDEag 0.0000E+00 3.7021E-01 3.7105E-01 0.0000E+00 2.1684E-21 1.0623E-20

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

C17
µJADEε 1.2326E-32 5.0345E+01 1.1189E+02 3.5857E-02 1.9562E+02 2.1804E+02
εDEag 1.4632E-17 1.2496E-01 1.9372E-01 2.1657E-01 6.3265E+00 4.9867E+00

DEwAPI 0.0000E+00 3.4513E-33 3.1223E-33 1.4385E-13 1.4861E-02 1.3969E-02

C18
µJADEε 0.0000E+00 2.5244E-31 8.7370E-31 2.2070E-01 1.9528E+03 3.5428E+03
εDEag 3.7314E-20 9.6788E-19 1.8112E-18 1.2261E+00 8.7546E+01 1.6648E+02

DEwAPI 0.0000E+00 0.0000E+00 0.0000E+00 9.4958E-12 3.6518E-01 1.7345E+00
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TABLE VI
STATISTICAL COMPARISON BETWEEN µJADEε, AND µPSO USING THE 95%-CONFIDENCE WILCOXON SIGNED RANK TEST ON 13 TEST PROBLEMS.

Function Optimal Algorithm Best Worst Median Mean St. D. Stats (µJADEε
vs µPSO)

g01 -15 µJADEε -15 -15 -15 -15 2.54E-16 +
µPSO -15 -13.273 -13 -9.7012 1.41

g02 -0.803619104 µJADEε -0.8036 -0.7535 -0.7926 -0.79298 0.011143 -
µPSO -0.80362 -0.77714 -0.77848 -0.7116 0.0191

g03 -1.0005001 µJADEε -1.0005 -1.0003 -1.0005 -1.0005 3.61E-05 +
µPSO -1.0004 -0.9936 -1.0004 -0.6674 0.0471

g04 -30665.53867 µJADEε -30666 -30666 -30666 -30666 1.23E-11 +
µPSO -30666 -30666 -30666 -30666 0.000683

g05 5126.496714 µJADEε 5126.5 5126.5 5126.5 5126.5 4.20E-12 +
µPSO 5126.6 5495.2 5261.8 6272.7 405

g06 -6961.813876 µJADEε -6961.8 -6961.8 -6961.8 -6961.8 4.59E-12 +
µPSO -6961.8 -6961.8 -6961.8 -6961.8 0.000261

g07 24.30620907 µJADEε 24.307 24.557 24.328 24.354 0.05834 +
µPSO 24.328 24.7 24.645 25.296 0.252

g08 -0.095825042 µJADEε -0.095825 -0.095825 -0.095825 -0.095825 8.41E-17 -
µPSO -0.095825 -0.095825 -0.095825 -0.095825 0

g09 680.6300574 µJADEε 680.63 680.63 680.63 680.63 0.00057886 +
µPSO 680.63 680.64 680.64 680.67 0.00668

g10 7049.248021 µJADEε 7049.3 7251 7060.7 7100.9 70.704 +
µPSO 7090.5 7747.6 7557.4 10534 552

g11 0.7499 µJADEε 0.7499 0.7499 0.7499 0.7499 3.36E-16 +
µPSO 0.7499 0.7673 0.7499 0.9925 0.06

g12 -1 µJADEε -1 -1 -1 -1 0 =
µPSO -1 -1 -1 -1 0

g13 0.053941514 µJADEε 0.053942 1 0.053942 0.10365 0.16684 +
µPSO 0.05941 0.81335 0.90953 2.4442 0.381


